Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
FA CE

P=\(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{2}{x-1}+\dfrac{2}{\sqrt{x}-1}\left(x\ge0,x\ne1\right)\)

a,rút gọn biểu thức P

b,tìm giá trị P khi x=\(\dfrac{9}{4}\)

c,với giá trị nào của x thì P <0

Nguyễn Lê Phước Thịnh
22 tháng 11 2023 lúc 12:07

a: \(P=\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{2}{x-1}+\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-2+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}-2+2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

b: Khi x=9/4 thì \(P=\dfrac{3}{2}:\left(\dfrac{3}{2}-1\right)=\dfrac{3}{2}:\dfrac{1}{2}=3\)

c: P<0

=>\(\dfrac{\sqrt{x}}{\sqrt{x}-1}< 0\)

=>\(\sqrt{x}-1< 0\)

=>\(\sqrt{x}< 1\)

=>0<=x<1


Các câu hỏi tương tự
Sun Trần
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết
Quang
Xem chi tiết
Lấp La Lấp Lánh
Xem chi tiết
hoàng
Xem chi tiết
123 nhan
Xem chi tiết
Oriana.su
Xem chi tiết
Xem chi tiết
Yết Thiên
Xem chi tiết