Bạn cần bài nào thì nên ghi chú rõ bài đó ra nhé. Nếu cần nhiều bài thì nên tách từng bài từng post để được hỗ trợ tốt hơn.
Bài 7:
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=BC^2-AB^2=20^2-12^2=256\)
=>AC=16(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=BA^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AH=\dfrac{12\cdot16}{20}=9,6\left(cm\right)\\BH=\dfrac{12^2}{20}=7,2\left(cm\right)\end{matrix}\right.\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\left(1\right)\)
ΔAHC vuông tại H
=>\(HA^2+HC^2=AC^2\)
=>\(AH^2=AC^2-HC^2\left(2\right)\)
Từ (1) và (2) suy ra \(HB\cdot HC=AC^2-HC^2\)