ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>HB*HC=36
=>HB(HB+9)=36
=>HB^2+9HB-36=0
=>(HB+12)(HB-3)=0
=>HB=3cm
HC=9+3=12cm
Ta có: HC = HB + 9
Áp dụng hệ thức lượng vào tam giác vuông ABC, ta có:
\(AH^2=HB\cdot HC\\ \Rightarrow HB\cdot\left(HB+9\right)=6^2\\ \Leftrightarrow HB^2+9HB-36=0\\ \Leftrightarrow\left(HB+12\right)\left(HB-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}HB=3\\HB=-12\left(loại\right)\end{matrix}\right.\\ \Rightarrow HC=HB+9=3+9=12\left(cm\right)\)
Vậy HC = 12cm, HB = 3cm.