1: \(=\sqrt{2+2\cdot\sqrt{2}\cdot1+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\left|\sqrt{2}+1\right|=\sqrt{2}+1\)
2: \(=\sqrt{2-2\cdot\sqrt{2}\cdot1+1}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)
3: \(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{3}\right|=\sqrt{5}-\sqrt{3}\)
4: \(=\sqrt{5+2\cdot\sqrt{5}\cdot\sqrt{3}+3}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)
5: \(=\sqrt{3-2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\left|\sqrt{3}-\sqrt{2}\right|\)
=căn 3-căn 2
6:
\(=\sqrt{3-2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\left|\sqrt{3}-\sqrt{2}\right|\)
=căn 3-căn 2
7: \(=\sqrt{3+2\cdot\sqrt{3}\cdot1+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
8: \(=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
