a: \(=3x-\left|3x-1\right|=\left[{}\begin{matrix}3x-3x+1=1\left(x>=\dfrac{1}{3}\right)\\3x+3x-1=6x-1\left(x< \dfrac{1}{3}\right)\end{matrix}\right.\)
b: \(=\sqrt{-\left(2x-1\right)^2}\)
c: \(=\dfrac{\left|x-5\right|}{x-5}=\pm1\)
d: \(=\left|x-2\right|+\dfrac{\left|x-2\right|}{x-2}=\left[{}\begin{matrix}x-2+\dfrac{x-2}{x-2}=x-1\left(x>2\right)\\2-x+\dfrac{2-x}{x-2}=2-x+1=3-x\left(x< 2\right)\end{matrix}\right.\)
f: \(=x^2\cdot\left|x-1\right|=x^2\left(1-x\right)=x^2-x^3\)
e)
\(=3x-2+\dfrac{\sqrt{\left(3x-2\right)^2}}{3x-2}=3x-2+\dfrac{3x-2}{3x-2}\)
\(=3x-2+1=3x-1\)
g)
\(=\sqrt{\dfrac{\left(x-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\dfrac{x-1}{\sqrt{x}+1}\)
c)
\(=\dfrac{\sqrt{\left(x-5\right)^2}}{x-5}=\dfrac{\left|x-5\right|}{x-5}=\pm1\) nek bn:v