a: \(Q=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
b: Để Q<1 thì Q-1<0
\(\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
=>x<9
Kết hợp ĐKXĐ, ta có: 0<=x<9 và x<>4
c: Để Q là số nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2;4\right\}\)
hay \(x\in\left\{16;25;1;49\right\}\)
a, đk : x >= 0 ; x khác 4 ; 9
\(Q=\dfrac{2\sqrt{x}-9-x+9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-x+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
b, Ta có \(Q=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-1< 0\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\Rightarrow\sqrt{x}-3< 0\Leftrightarrow x< 9\)
Kết hợp đk vậy 0 =< x < 9 , x khác 4
c, \(Q=\dfrac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
x | 16 | loại | 25 | 1 | 49 | loại |