\(x_1+x_2=3;x_1x_2=-7\)
e: \(E=\dfrac{x_2-1+x_1-1}{\left(x_1-1\right)\left(x_2-1\right)}=\dfrac{3-2}{x_1x_2-\left(x_1+x_2\right)+1}=\dfrac{1}{-7-3+1}=\dfrac{1}{-9}=-\dfrac{1}{9}\)
f: \(E=3x_1x_2+3x_1^2+3x_2^2+x_1x_2\)
\(=3\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+4x_1x_2\)
\(=3\cdot\left[3^2-2\cdot\left(-7\right)\right]+4\cdot\left(-7\right)=3\cdot23-28=69-28=41\)