a) \(=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{5-2}-\sqrt{5}+\sqrt{2}-\sqrt{\left(2\sqrt{2}-1\right)^2}\)
\(=\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}-2\sqrt{2}+1=1\)
b) \(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}-3}+\dfrac{\sqrt{x}-3-\sqrt{x}+x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\sqrt{x}+\dfrac{x-9}{x-9}=\sqrt{x}+1\)
\(a,=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}-\sqrt{5}+\sqrt{2}-\sqrt{\left(2\sqrt{2}-1\right)^2}\\ =\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}-2\sqrt{2}+1=1\\ b,=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}+\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ =\sqrt{x}+\dfrac{1}{\sqrt{x}+3}+\dfrac{\sqrt{x}+2}{\sqrt{x}+3}=\sqrt{x}+\dfrac{\sqrt{x}+3}{\sqrt{x}+3}\\ =\sqrt{x}+1\)