1) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow3x-2=x+6\Leftrightarrow2x=8\Leftrightarrow x=4\left(tm\right)\)
2) \(pt\Leftrightarrow\sqrt{\left(5x-1\right)^2}=3\Leftrightarrow\left|5x-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=3\\5x-1=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
3) \(pt\Leftrightarrow\sqrt{\left(2x-3\right)^2}=7\Leftrightarrow\left|2x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
4) ĐKXĐ: \(x\ge1\)
\(pt\Leftrightarrow3\sqrt{x-1}+\sqrt{x-1}=8\Leftrightarrow4\sqrt{x-1}=8\)
\(\Leftrightarrow\sqrt{x-1}=2\Leftrightarrow x-1=4\Leftrightarrow x=5\left(tm\right)\)
5) ĐKXĐ: \(x\ge-2\)
\(pt\Leftrightarrow2\sqrt{x+2}-\sqrt{x+2}+3\sqrt{x+2}=12\)
\(\Leftrightarrow4\sqrt{x+2}=12\Leftrightarrow\sqrt{x+2}=3\)
\(\Leftrightarrow x+2=9\Leftrightarrow x=7\left(tm\right)\)
\(1,ĐK:x\ge\dfrac{2}{3}\\ PT\Leftrightarrow3x-2=x+6\Leftrightarrow x=4\left(tm\right)\\ b,PT\Leftrightarrow\left|5x-1\right|=3\Leftrightarrow\left[{}\begin{matrix}5x-1=3\\1-5x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\\ 3,PT\Leftrightarrow\left|2x-3\right|=7\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\3-2x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\\ 4,ĐK:x\ge1\\ PT\Leftrightarrow3\sqrt{x-1}+\sqrt{x-1}=8\Leftrightarrow\sqrt{x-1}=2\\ \Leftrightarrow x-1=4\Leftrightarrow x=5\left(tm\right)\\ 5,ĐK:x\ge-2\\ PT\Leftrightarrow2\sqrt{x+2}-\sqrt{x+2}+3\sqrt{x+2}=12\\ \Leftrightarrow\sqrt{x+2}=3\Leftrightarrow x+2=9\Leftrightarrow x=7\left(tm\right)\)