Nguyễn Việt Lâm
4 giờ trước (14:50)

Pt đã cho có 2 nghiệm khi: 

\(\left\{{}\begin{matrix}m\ne0\\\Delta'=\left(m-1\right)^2-m\left(m-5\right)>0\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\3m+1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m>-\dfrac{1}{3}\end{matrix}\right.\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{2\left(m-1\right)}{m}\\x_1x_2=\dfrac{m-5}{m}\end{matrix}\right.\)

\(x_1< x_2< 2\Rightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m-5}{m}+\dfrac{4\left(m-1\right)}{m}+4>0\\\dfrac{-2\left(m-1\right)}{m}< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{9m-9}{m}>0\\\dfrac{6m-2}{m}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\\\left[{}\begin{matrix}m>\dfrac{1}{3}\\m< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\)

Kết hợp điều kiện ban đầu \(\Rightarrow\left[{}\begin{matrix}m>1\\-\dfrac{1}{3}< m< 0\end{matrix}\right.\)

Bình luận (0)
Nguyễn Lê Phước Thịnh
4 giờ trước (14:42)

a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)< >0\)

hay \(m\notin\left\{3;-2\right\}\)

Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\\left(m-3\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-2\)

Để phương trình có vô số nghiệm thì m=3

Bình luận (0)
Nguyễn Lê Phước Thịnh
4 giờ trước (14:40)

ĐKXĐ: m<>-1

Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\left(m+1\right)\left(m-2\right)\)

\(=\left(2m-2\right)^2-4\left(m^2-m-2\right)\)

\(=4m^2-8m+4-4m^2+4m-8\)

\(=-4m-4\)

Để phương trình có hai nghiệm phân biệt thì -4m-4>0

hay m<-1

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1\cdot x_2=\dfrac{m-2}{m+1}\\x_1+x_2=\dfrac{2\left(m-1\right)}{m+1}\end{matrix}\right.\)

\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4x_1x_2\)

\(\Leftrightarrow\left(\dfrac{2m-2}{m+1}\right)^2-6\cdot\dfrac{m-2}{m+1}=0\)

\(\Leftrightarrow\left(2m-2\right)^2-6\left(m^2-m-2\right)=0\)

\(\Leftrightarrow4m^2-8m+4-6m^2+6m+12=0\)

\(\Leftrightarrow-2m^2-2m+16=0\)

\(\Leftrightarrow m^2-m-8=0\)

Đến đây bạn tự giải nhé

Bình luận (0)
Nguyễn Hoàng Minh
4 giờ trước (14:43)

PT có 2 nghiệm \(\Leftrightarrow\Delta=4\left(m-1\right)^2-4\left(m-2\right)\left(m+1\right)\ge0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m+8\ge0\\ \Leftrightarrow12-4m\ge0\\ \Leftrightarrow m\le3\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m+1}\\x_1x_2=\dfrac{m-2}{m+1}\end{matrix}\right.\)

\(\dfrac{x_2}{x_1}+\dfrac{x_1}{x_2}=-4\\ \Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}=-4\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=-4x_1x_2\\ \Leftrightarrow\left(x_1+x_2\right)^2=-2x_1x_2\\ \Leftrightarrow\dfrac{4\left(m-1\right)^2}{\left(m+1\right)^2}=\dfrac{4-2m}{m+1}\\ \Leftrightarrow4\left(m-1\right)^2=\left(4-2m\right)^2\\ \Leftrightarrow4m^2-8m+4=16-16m+4m^2\\ \Leftrightarrow8m=12\Leftrightarrow m=\dfrac{3}{2}\left(tm\right)\)

Bình luận (0)
Nguyễn Việt Lâm
6 giờ trước (12:57)

Hai vecto đã cho cùng phương khi:

\(\dfrac{m}{4}=\dfrac{1}{-2}\Rightarrow m=-2\)

Bình luận (0)
Nguyễn Việt Lâm
6 giờ trước (13:00)

Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(7;-4\right)\\\overrightarrow{DC}=\left(3-x;7-y\right)\end{matrix}\right.\)

ABCD là hbh khi: \(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}3-x=7\\7-y=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-4\\y=11\end{matrix}\right.\)

\(\Rightarrow D\left(-4;11\right)\)

Bình luận (0)
Nguyễn Hoàng Minh
8 giờ trước (11:06)

\(PT\left(1\right)\Leftrightarrow y=1-2x\\ \text{Thay vào }\left(2\right)\Leftrightarrow x^2+4x^2-4x+1+2x^2-x=3\\ \Leftrightarrow6x^2-5x-2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{73}}{12}\Rightarrow y=\dfrac{1-\sqrt{73}}{6}\\x=\dfrac{5-\sqrt{73}}{12}\Rightarrow y=\dfrac{1+\sqrt{73}}{6}\end{matrix}\right.\)

Vậy hệ có nghiệm \(\left(x;y\right)=\left(\dfrac{5+\sqrt{73}}{12};\dfrac{1-\sqrt{73}}{6}\right);\left(\dfrac{5-\sqrt{73}}{12};\dfrac{1+\sqrt{73}}{6}\right)\)

Bình luận (0)
Rin Huỳnh
8 giờ trước (11:09)

2x + y = 1 <=> y = 1 - 2x

Thế vào pt còn lại thì:

x^2 + (1 - 2x)^2 - x(1 - 2x) = 3

<=> x^2 + 4x^2 - 4x + 1 - x + 2x^2 - 3 = 0

<=> 7x^2 - 5x - 2 = 0

<=> (x - 1)(7x + 2) = 0

<=> x = 1 hoặc x = -2/7

Với x = 1 <=> y = 1 - 2.1 = -1

Với x = -2/7 <=> y = 1 - 2.(-2/7) = 11/7

Bình luận (0)

Khoá học trên Online Math (olm.vn)