Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC
Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.
Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.
Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC
Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.
Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.
Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC
Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.
Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.
Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.
Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC
Cho tam giác ABC, trên các cạnh AB,AC lần lượt lấy D,E sao cho BD = BC = CE. CD giao BE tại F. Chứng minh rằng đường nối tâm nội tiếp I của tam giác ABC với trực tâm H của tam giác DEF đi qua trung điểm cung BAC của (ABC).
Cho tam giác ABC, trên cạnh AC và AB lần lượt lấy E và F, BE cắt CF tại P sao cho tứ giác AEPF nội tiếp. Lấy D bất kì trên BC. Đường tròn (O1) qua D và E đồng thời tiếp xúc với (AEPF), đường tròn (O2) được định nghĩa tương tự. Chứng minh rằng BC là trục đẳng phương của (O1) và (O2).
Cho tam giác ABC. B', C' thuộc BC. E, F thuộc AC, AB sao cho BE//B'A, CF//C'A. (ABC) cắt (AB'C') tại X khác A. Chứng minh rằng AX//EF.
Tam giác ABC cân tại A có \(\widehat{BAC}=80^o\), trên hai cạnh BC, AC của tam giác lần lượt lấy hai điểm D, E sao cho \(\widehat{BAD}=50^o,\widehat{ABE}=30^o\). Tính số đo \(\widehat{BED}\).
Cho 3 điểm A(-3;2);B(0;4);C(1;-1)
a,3 điểm A,B,C có thẳng hàng không
b,Tính chu vi Tam giác ABC
c,Tìm tọa độ trung điểm AB,BC,CA
đ,Tìm tọa độ trọng tâm Tam giác ABC
e,Tìm tọa độ Đ sao cho ABCD là hình bình hành
f,Tìm tọa độ E sao cho ABCD là hình bình hành
cho tam giác ABC vuông tại A, AB=3, AC=5. Lấy các điểm M,N trên các cạnh AB,AC sao cho MA=3MB, NC=3NA. đường thẳng qua A vuông góc MN cắt BE tại E. tính EB/EC
Cho tam giác ABC. Trên đoạn BC lấy điểm D sao cho CD=BC/3, trên đoạn AC lấy điểm E sao cho CE=AC/6 . Dựng hình bình hành DCEF. Trên tia FB lấy điểm M sao cho FM=2FB , trên tia FC lấy điểm N sao cho FN=3FC. Chứng minh rằng F là trọng tâm của tam giác AMN.
Câu 6: Cho tàm giác ABC có A(1; - 1) ;B(2; 0) ;C(3; 5) a) Tìm tọa độ các vecto AB ,AC ,BC b) Tính độ dài các cạnh của tam giác ABC. Từ đó tính chu vi tam giác. c) Tìm tọa độ trung điểm các cạnh và tìm tọa độ trọng tâm của tam giác ABC. d) Tìm tọa độ điểm D để tứ giác ABCD là hnh bình hành e) Tọa độ chân đường cao xuất phát từ A của tam giác. Đ) Tính góc A?
Ví dụ 1. Tam giác ABC có các cạnh a = 13 m, b = 14 m và c = 15 m a) Tính diện tích tam giác ABC ; b) Tính bán kính đường tròn nội tiếp và ngoại tiếp tam giác ABC. Ví dụ 2. Tam giác ABC có cạnh a = 2√3 , cạnh b = 2 và C (mũ) = 30⁰. Tính cạnh c, góc A và diện tích tam giác đó. Ví dụ 3. Cho tam giác ABC có cạnh a = 24cm b = 13cm và c = 15vm .Tính diện tích S của tam giác và bán kính r của đường tròn nội tiếp, 1. Cho tam giác ABC vuông tại A,B = 58⁰ và cạnh a = 72cm Tính C (mũ), cạnh bạcạnh c và đường cao ha 2. Cho tam giác ABC biết các cạnh a = 52.1 cm, b = 85 cm và c = 54 cm. Tính các góc A(mũ), B(mũ) và C(mũ).