\(\Delta=25-4\left(3m-1\right)=29-12m\ge0\Rightarrow m\le\dfrac{29}{12}\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=3m-1\end{matrix}\right.\)
\(x_1^3+x_2^3+3x_1x_2=-35\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+3x_1x_2=-35\)
\(\Leftrightarrow\left(-5\right)^3+15\left(3m-1\right)+3\left(3m-1\right)=-35\)
\(\Leftrightarrow18\left(3m-1\right)=90\)
\(\Rightarrow m=2\) (thỏa mãn)
\(\text{Δ}=5^2-4\cdot1\cdot\left(3m-1\right)\)
\(=25-4\left(3m-1\right)\)
\(=25-12m+4=-12m+29\)
Để phương trình (1) có hai nghiệm thì Δ>=0
=>-12m+29>=0
=>-12m>=-29
=>\(m< =\dfrac{29}{12}\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-5}{1}=-5\\x_1x_2=\dfrac{c}{a}=\dfrac{3m-1}{1}=3m-1\end{matrix}\right.\)
\(x_1^3+x_2^3+3x_1x_2=-35\)
=>\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+3x_1x_2=-35\)
=>\(\left(-5\right)^3-3\cdot\left(3m-1\right)\cdot\left(-5\right)+3\cdot\left(3m-1\right)=-35\)
=>\(-125+15\left(3m-1\right)+9m-3=-35\)
=>\(-125+45m-15+9m-3=-35\)
=>54m-143=-35
=>54m=108
=>m=2(nhận)