Gọi \(B'\left(x;y\right)\)
Ta có: \(\overrightarrow{BB'}=\left(x-3;y+1\right)\) ; \(\overrightarrow{AC}=\left(5;-5\right)\) ; \(\overrightarrow{AB'}=\left(x-1;y-5\right)\)
Do \(\left\{{}\begin{matrix}BB'\perp AC\\B'\in AC\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5\left(x-1\right)-5\left(y+1\right)=0\\\frac{x-1}{5}=\frac{y-5}{-5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=2\\x+y=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)
\(\Rightarrow B'\left(4;2\right)\)