Cho ΔABC có BC=6, AB=5, và vecto BC.BA=24. Tính độ dài trung tuyến BM và cosin của góc nhọn tạo bởi BM và đường cao AH.
Cho tam giác ABC có A(2;3), B(-1;-2), C(4;1)
a. Chứng minh tam giác ABC cân và tính diện tích tam giác ABC
b. Tìm tọa độ D sao cho C là trung điểm AD
c. Tìm tọa độ H thuộc BC sao cho AH vuông BC
Trong hệ trục tọa độ Oxy, cho tam giác ABC có A(2;-1), B(0;2) và C(-1;4). Tính số đo của góc \(\widehat{BAC}\)
Trong mặt phẳng Oxy cho tam giác ABC có A (4;3) ; B( 2;7 ); C(3;8). Tìm toạ độ chân đường cao kẻ từ đỉnh A xuống BC
Cho MM' là đường kính bất kỳ của đường tròn tâm O, bán kính R. A là điểm cố định và OA=d. AM cắt đường tròn tâm O tại N. CMR vecto AM.AM' ; AM.AN có giá trị không phụ thuộc vào M.
Bài 1:Cho tam giác ABC có A(1;2), B(-2;6), C(9;8). Tìm tọa độ điểm G trên trục hoành sao cho \(|\overrightarrow{GA}+2\overrightarrow{GB}-3\overrightarrow{GC}|\) nhỏ nhất.
Bài 2: Trong mặt phẳng toạ độ chó 3 điểm A(1;4), B(-2;-2), C(4;2)
a) Xác định tọa độ điểm M sao cho tổng \(MA^2+2MB^2+3MC^2\) nhỏ nhất
b) Xác định tọa độ điểm N sao cho tổng \(NA^2-2NB^2+4NC^2\) nhỏ nhất
1. Cho tam giác ABC cân tại A , góc A=120° và AB=a . Tính vectơ BA.CA
2. Cho tam giác ABC có A(1;2) , B(-1;1) , C( 5;-1). Tính cos A
24. Cho hình.vuông ABCD , tính cos(vecto AB,CA)
25. Cho hai điểm A( -3;2) , B(4;3). Tìm điểm M thuộc trục Ox vag có hoành độ dương để tâm giác MAB vuông tại M.
28. Cho hình vuông ABCD có cạnh a. Tính vectơ AB.AD.
33. Tính ( vectơ a,b) biết vectơ a.b = -1/2 |a|. |b| ( vectơ a,b #0)