\(\overrightarrow{BC}=\left(-4;3\right)\Rightarrow\) đường thẳng BC nhận \(\left(3;4\right)\) là 1 vtpt
Phương trình BC
\(3\left(x-3\right)+4\left(y+2\right)=0\Leftrightarrow3x+4y-1=0\)
Do \(AH\perp BC\) nên AH nhận \(\left(-4;3\right)\) là 1 vtpt
Phương trình AH:
\(-4\left(x-1\right)+3\left(y-2\right)=0\Leftrightarrow-4x+3y-2=0\)
Gọi M là trung điểm AB \(\Rightarrow M\left(2;0\right)\Rightarrow\overrightarrow{CM}=\left(3;-1\right)\Rightarrow\) đường thẳng CM nhận \(\left(1;3\right)\) là 1 vtpt
Phương trình CM:
\(1\left(x-2\right)+3\left(y-0\right)=0\Leftrightarrow x+3y-2=0\)
Khoảng cách từ A đến delta:
\(d\left(A;\Delta\right)=\frac{\left|3.1+4.2-1\right|}{\sqrt{3^2+4^2}}=\frac{10}{5}=2\)