A=\(\dfrac{m+3}{\left(m+2\right)^2}=\dfrac{m+2+1}{\left(m+2\right)^2}=\dfrac{1}{m+2}+\dfrac{1}{\left(m+2\right)^2}=\dfrac{1}{\left(m+2\right)^2}+\dfrac{2.1}{2\left(m+2\right)^2}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\dfrac{1}{\left(m+2\right)^2}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}>=-\dfrac{1}{4}\)
Do đó: Amin =-1/4