a, ta có:
\(\sqrt{24}=4,89\\ \sqrt{3}=1,73\)
\(\Rightarrow\sqrt{24}+\sqrt{3}=4,89+1,73=6,62\)
vì 7>6,62 nên 7>\(\sqrt{24}+\sqrt{3}\)
\(7=5+2=\sqrt{25}+\sqrt{4}>\sqrt{24}+\sqrt{3}\)
\(\left(\sqrt{50+2}\right)^2=\left|50+2\right|=50+2\\ \left(\sqrt{50}+\sqrt{2}\right)^2=50+20+2>50+2=\left(\sqrt{50+2}\right)^2\\ \Rightarrow\sqrt{\left(\sqrt{50+2}\right)^2}< \sqrt{\left(\sqrt{50}+\sqrt{2}\right)^2}\\ \Leftrightarrow\left|\sqrt{50+2}\right|< \left|\sqrt{50}+\sqrt{2}\right|\\ \Leftrightarrow\sqrt{50+2}< \sqrt{50}+\sqrt{2}\)
\(\left(\sqrt{63-27}\right)^2=\left|63-27\right|=63-27\\ \left(\sqrt{63}-\sqrt{27}\right)^2=63-2\sqrt{90}+27>63-20+27=63-7>63-27=\left(\sqrt{63-27}\right)^2\\ \Rightarrow\sqrt{\left(\sqrt{63-27}\right)^2}< \sqrt{\left(\sqrt{63}-\sqrt{27}\right)^2}\\ \Leftrightarrow\left|\sqrt{63-27}\right|< \left|\sqrt{63}-\sqrt{27}\right|\\ \Leftrightarrow\sqrt{63-27}< \sqrt{63}-\sqrt{27}\)
b, Ta có:
\(\sqrt{50+2}=\sqrt{52}=7,21\\
\sqrt{50}+\sqrt{2}=7,07+1,41=8,48
\)
vì 7,21<8,48 nên \(\sqrt{50+2}< \sqrt{50}+\sqrt{2}\)
Phạm Hoàng Giang, Trần Quốc Lộc, Trần Thị Hương, hattori heiji, TRẦN MINH HOÀNG, An Nguyễn Bá, Ribi Nkok Ngok, Kien Nguyen, Trần Đăng Nhất, Hung nguyen, Ace Legona, Ái Hân Ngô, Nguyễn Thanh Hằng, Hung nguyen, Lam Ngo Tung, lê thị hương giang, Nguyễn Huy Tú, Silver bullet, Toshiro Kiyoshi, soyeon_Tiểubàng giải, Võ Đông Anh Tuấn, Hoàng Lê Bảo Ngọc,...
c) Ta có:
\(\left(\sqrt{63-27}\right)^2=63-27=63+27-54\)
\(\left(\sqrt{63}-\sqrt{27}\right)^2=\left(\sqrt{63}\right)^2-2\sqrt{63}\sqrt{27}+\left(\sqrt{27}\right)^2=63+27-2\sqrt{63}\sqrt{27}\)
Ta lại có: \(\left\{{}\begin{matrix}\sqrt{63}>\sqrt{49}=7\\\sqrt{27}>\sqrt{25}=5\end{matrix}\right.\)
\(\Rightarrow2\sqrt{63}\sqrt{27}>70>54\)
Vì \(2\sqrt{63}\sqrt{27}>54\) nên \(63+27-54>63+27-2\sqrt{63}\sqrt{27}\)
\(\Rightarrow\left(\sqrt{63-27}\right)^2>\left(\sqrt{63}-\sqrt{27}\right)^2\)
\(\Rightarrow\sqrt{63-27}>\sqrt{63}-\sqrt{27}\)
Vậy...
c) Ta có : \(\sqrt{63}-\sqrt{27}< \sqrt{64}-\sqrt{27}=8-3=5< 6=\sqrt{36}=\sqrt{63-27}\)
Vậy \(\sqrt{63-27}>\sqrt{63}-\sqrt{27}\)