CHứng minh rằng \(\frac{tanx}{1-tan^2x}.\frac{cot^2x-1}{cotx}=1\)
cho sinx+cosx bằng \(\frac{1}{5}\). Tính sinx, cosx, tanx, cotx
Cho \(tanx-cotx=3\). Tính giá trị của biểu thức : \(A=tan^2x+cot^2x;B=tanx+cotx;C=tan^4x-cot^4x\)
cho \(tanx+cotx=m\). Tính \(tan^2x+cot^2x\)
cho tanx = -1. tính giá trị biểu thức P = \(\frac{sinx+2cosx}{cosx+2sinx}\)
Cho tanx \(\sqrt{2}\). Tính B = \(\frac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}\)
Cho \(sinx+cosx=\frac{1}{5}\) Tính P = | sinx - cosx |
29. Cho tan x=3. Tính A = 2sin^2.x - 5sinx.cosx +cos^2.x / 2sin^2.x + sinx.cosx + cos^2.x
Chứng minh các đẳng thức :
a) sin3x = 3sinx - 4sin3x
b) tan 2x + 1/cos2x = 1-2sin2x/1-sin2x
c) (cosx+sinx/cosx-sinx) - (cosx-sinx/cosx+sinx) = 2tan 2x
d) sin2x/1+cos2x = tanx
e)
Rút gọn các biểu thức sau:
A= \(\dfrac{cos^2\alpha-sin^2\alpha}{cot^2\alpha-tan^2\alpha}-cos^2\alpha\)
B= \(\sqrt{sin^4\alpha+6cos^2\alpha+3cos^4\alpha}+\sqrt{cos^4\alpha+6sin^2\alpha+3sin^4\alpha}\)
rút gọn biểu thức lượng giác
\(\frac{\sin x+\cos x-1}{\sin x-\cos x+1}=\frac{\cos x}{1+\sin x}\)