\(A=\frac{2sin^2x-5sinx.cosx+cos^2x}{2sin^2x+sinx.cosx+cos^2x}=\frac{\frac{2sin^2x}{cos^2x}-\frac{5sinx.cosx}{cos^2x}+\frac{cos^2x}{cos^2x}}{\frac{2sin^2x}{cos^2x}+\frac{sinx.cosx}{cos^2x}+\frac{cos^2x}{cos^2x}}\)
\(=\frac{2tan^2x-5tanx+1}{2tan^2x+tanx+1}=\frac{2.3^2-5.3+1}{2.3^2+3+1}=...\)