\(\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}\) (ĐK: \(x>0,x\ne1\))
\(=\dfrac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(\sqrt{x}+2\right)\left(1-\sqrt{x}\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}}\)
\(\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}\)
\(=\dfrac{\left(1-\sqrt{x}\right).\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(\sqrt{x}+2\right).\left(1-\sqrt{x}\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}}\)