\(\overrightarrow{u_d}=\left(1;-2\right)\Rightarrow\) d có 1 vtpt là \(\overrightarrow{n_d}=\left(2;1\right)\)
Phương trình tổng quát:
\(2\left(x-5\right)+1\left(y+9\right)=0\Leftrightarrow2x+y-1=0\)
\(\overrightarrow{u_d}=\left(1;-2\right)\Rightarrow\) d có 1 vtpt là \(\overrightarrow{n_d}=\left(2;1\right)\)
Phương trình tổng quát:
\(2\left(x-5\right)+1\left(y+9\right)=0\Leftrightarrow2x+y-1=0\)
giải hệ phương trình :
\(\left\{{}\begin{matrix}^{x^3-y^3-x^2y+xy^2+x-y}=0\\\sqrt{2x^2+y+9}+\sqrt{2y^2-x+1}=x+4\end{matrix}\right.\)
Giải hệ phương trình :\(\left\{{}\begin{matrix}x^3-2x^2+2x+2y+x^2y-4=0\\x^2-xy-4x-1=\sqrt{3x-y+7}\end{matrix}\right.\)
Bài 1: Cho hệ phương trình \(\left\{{}\begin{matrix}x+y=2\\x^2y+xy^2=2m^2\end{matrix}\right.\)với m là tham số. Tìm tất cả các giá trị của m để hệ trên có nghiệm.
Bài 2: Trong mặt phẳng với hệ tọa độ Oxy, A(-3;5) B(1;3) và đường thẳng d: 2x - y - 1 = 0, đường thẳng AB cắt d tại I. Tính tỉ số \(\frac{IA}{IB}\)
Bài 10: Tìm các giá trị của tham số m để bất phương trình sau có nghiệm:
a) \(\left\{{}\begin{matrix}x^2+2x-15< 0\\\left(m+1\right)x\ge3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2-3x-4\le0\\\left(m-1\right)x-2\ge0\end{matrix}\right.\)
Giải hpt sau:
1, \(\left\{{}\begin{matrix}x+y=5\\\sqrt{x+1}+\sqrt{y-1}=3\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2y-2x^2+3y=6\\\sqrt{x^2+5}+\sqrt{y^2+5}=3x-y-1\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}2x-2=y+\sqrt{y-2}\\2y-2=x+\sqrt{x-2}\end{matrix}\right.\)
Mng giúp mình vs ạ!!!
giải hệ phương trình:
\(\left\{{}\begin{matrix}\left(1-y\right)\sqrt{x^2+2y^2}=x+2y+3xy\\\sqrt{y+1}+\sqrt{x^2+2y^2}=2y-x\end{matrix}\right.\)
Gọi (x;y) là nghiệm của hệ phương trình \(\left\{{}\begin{matrix}x-my=2-4m\\mx+y=3m+1\end{matrix}\right.\).Tìm giá trị lớn nhất của biểu thức\(L=x^2+y^2-2x\) khi m thay đổi
giải hệ pt \(\left\{{}\begin{matrix}x^3+xy^2+x^2+xy+2y^2-2y^2=0\\\left(7x+1\right)\sqrt{5x+2y}+\left(7x+6\right)\sqrt{7y}=49x^2+49x+12\end{matrix}\right.\)
Cho hệ phương trình \(\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=\frac{-5}{4}\\x^4+y^2+xy\left(1+2x\right)=\frac{-5}{4}\end{matrix}\right.\) biết rằng hệ đã cho có 2 nghiệm \(\left(x_1;y_1\right);\left(x_2;y_2\right)\)
Tính tổng hai nghiệm \(x_1^3+x_2^3\)