Gọi H là chân đường cao hạ từ A xuống BC \(\Rightarrow\Delta ABH\) vuông cân tại H (do \(\widehat{B}=45^0\))
\(\Rightarrow BH=AH=2a\Rightarrow HC=BH+AD=4a\)
\(\Rightarrow AC=\sqrt{AH^2+HC^2}=2a\sqrt{5}\)
Vậy:
\(\left|\overrightarrow{CB}-\overrightarrow{AD}+\overrightarrow{AC}\right|=\left|\overrightarrow{CB}+\overrightarrow{DA}+\overrightarrow{AC}\right|=\left|\overrightarrow{CB}+\overrightarrow{DC}\right|=\left|\overrightarrow{DB}\right|=AC=2a\sqrt{5}\)