\(\frac{a^3}{b^3}+1+1\ge\frac{3a}{b}\) ; \(\frac{b^3}{c^3}+1+1\ge\frac{3b}{c}\) ; \(\frac{c^3}{a^3}+1+1\ge\frac{3c}{a}\)
Cộng vế với vế:
\(\frac{a^3}{b^3}+\frac{b^3}{c^3}+\frac{c^3}{a^3}+6\ge\frac{3a}{b}+\frac{3b}{c}+\frac{3c}{a}\)
\(\Leftrightarrow\frac{a^3}{b^3}+\frac{b^3}{c^3}+\frac{c^3}{a^3}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\)
\(\Rightarrow\frac{a^3}{b^3}+\frac{b^3}{c^3}+\frac{c^3}{a^3}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+2.3\sqrt[3]{\frac{abc}{bca}}-6=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)