Bài 4. ÔN TẬP CHƯƠNG III

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Khánh Linh

Bài 1 : giải bất phương trình

1 , \(\frac{11x^2-5x+6}{x^2+5x+6}< x\)

2 , \(\frac{2-x}{x^3+x^2}>\frac{1-2x}{x^3-3x^2}\)

3 , \(\left|x^2-x-1\right|\le x-1\)

Nguyễn Việt Lâm
16 tháng 5 2020 lúc 18:25

\(x-\frac{11x^2-5x+6}{x^2+5x+6}>0\)

\(\Leftrightarrow\frac{x^3-6x^2+11x-6}{x^2+5x+6}>0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x-2\right)\left(x-3\right)}{\left(x+2\right)\left(x+3\right)}>0\Rightarrow\left[{}\begin{matrix}x>3\\1< x< 2\\-3< x< -2\end{matrix}\right.\)

b/ \(\frac{2-x}{x^3+x^2}-\frac{1-2x}{x^3-3x^2}>0\)

\(\Leftrightarrow\frac{\left(2-x\right)\left(x+1\right)-\left(1-2x\right)\left(x-3\right)}{x^2\left(x+1\right)\left(x-3\right)}>0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x-5\right)}{x^2\left(x+1\right)\left(x-3\right)}>0\Rightarrow\left[{}\begin{matrix}x< -1\\x>5\\1< x< 3\end{matrix}\right.\)

c/ \(\left|x^2-x-1\right|\le x-1\)

Với \(x< 1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT vô nghiệm

Với \(x\ge1\) hai vế ko âm, bình phương:

\(\left(x^2-x-1\right)^2\le\left(x-1\right)^2\)

\(\Leftrightarrow\left(x^2-x-1\right)^2-\left(x-1\right)^2\le0\)

\(\Leftrightarrow\left(x^2-2x\right)\left(x^2-2\right)\le0\) \(\Rightarrow\sqrt{2}\le x\le2\)


Các câu hỏi tương tự
Nguyễn Khánh Linh
Xem chi tiết
Mây Xanh
Xem chi tiết
Đỗ Thị Kim Anh
Xem chi tiết
Phạm Minh Khôi
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Hà Linh
Xem chi tiết
Cathy Trang
Xem chi tiết
Hạ Băng Băng
Xem chi tiết