\(a,\) Ta có: \(\Delta=b^2-4ac=a^2-4ac=a^2-4.1.\left(-1\right)\) \(=a^2+4>0\forall x\)
\(\rightarrow\) Phương trình luôn có 2 nghieepmj phân biệt.
\(b,\) Ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-a\\x_1.x_2=\dfrac{c}{a}=-1\end{matrix}\right.\)
\(\left(x_1-1\right)\left(x_2-1\right)=2\)
\(\rightarrow x_1x_2-x_1-x_2+1-2=0\)
\(\rightarrow-\left(x_1+x_2\right)+x_1x_2-1=0\)
\(\rightarrow--a+-1-1=0\)
\(\rightarrow a=2\)

