2: ĐKXĐ: x>=1
Ta có: \(\sqrt{x^2-2x+5}+\sqrt{x-1}=2\)
=>\(\sqrt{x^2-2x+5}-2+\sqrt{x-1}=0\)
=>\(\frac{x^2-2x+5-4}{\sqrt{x^2-2x+5}+2}+\sqrt{x-1}=0\)
=>\(\frac{\left(x-1\right)^2}{\sqrt{x^2-2x+5}+2}+\sqrt{x-1}=0\)
=>\(\sqrt{x-1}\left(\frac{\left(\sqrt{x-1}\right)^3}{\sqrt{x^2-2x+5}+2}+1\right)=0\)
=>\(\sqrt{x-1}=0\)
=>x-1=0
=>x=1(nhận)
5: ĐKXĐ: x>=1
Ta có: \(x+\sqrt{5+\sqrt{x-1}}=6\)
=>\(x-1+\sqrt{5+\sqrt{x-1}}=5\) (1)
Đặt \(\sqrt{x-1}=a\)
Phương trình (1) sẽ trở thành: \(a^2+\sqrt{5+a}=5\)
=>\(a^2+\sqrt{5+a}=5+a-a\)
=>\(a^2+\sqrt{5+a}-\left(\sqrt{5+a}\right)^2+a=0\)
=>\(\left(a-\sqrt{a+5}\right)\left(a+\sqrt{a+5}\right)+\left(\sqrt{5+a}+a\right)=0\)
=>\(\left(a+\sqrt{a+5}\right)\left(a-\sqrt{a+5}+1\right)=0\)
=>\(a+1-\sqrt{a+5}=0\)
=>\(\sqrt{a+5}=a+1\)
=>\(\begin{cases}a+5=\left(a+1\right)^2\\ a+1\ge0\end{cases}\Rightarrow\begin{cases}a^2+2a+1=a+5\\ a+1\ge0\end{cases}\)
=>\(\begin{cases}a^2+a-4=0\\ a\ge-1\end{cases}\Rightarrow a=\frac{1+\sqrt{17}}{2}\)
=>\(x-1=\left(\frac{1+\sqrt{17}}{2}\right)^2=\frac{18+2\sqrt{17}}{4}=\frac{9+\sqrt{17}}{2}\)
=>\(x=\frac{11+\sqrt{17}}{2}\) (nhận)

