a: Thay m=-6 vào (1), ta được:
\(x^2-8x+\left(-6\right)-1=0\)
=>\(x^2-8x-7=0\)
=>\(x^2-8x+16-23=0\)
=>\(\left(x-4\right)^2=23\)
=>\(\left[{}\begin{matrix}x-4=\sqrt{23}\\x-4=-\sqrt{23}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4+\sqrt{23}\\x=4-\sqrt{23}\end{matrix}\right.\)
b: \(\text{Δ}=\left(-8\right)^2-4\left(m-1\right)=64-4m+4=-4m+68\)
Để phương trình (1) có hai nghiệm thì Δ>=0
=>-4m+68>=0
=>-4m>=-68
=>m<=17
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=8\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)
\(P=\left(x_1^2-1\right)\left(x_2^2-1\right)+2088\)
\(=\left(x_1x_2\right)^2-\left(x_1^2+x_2^2\right)+1+2088\)
\(=\left(m-1\right)^2-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+2089\)
\(=\left(m-1\right)^2-\left[8^2-2\left(m-1\right)\right]+2089\)
\(=\left(m-1\right)^2+2\left(m-1\right)-64+2089\)
\(=\left(m-1\right)^2+2\left(m-1\right)+2025=\left(m-1+1\right)^2+2024=m^2+2024>=2024\forall m\)
Dấu '=' xảy ra khi m=0(nhận)

