a: \(\text{Δ}=\left(m+1\right)^2-4\cdot1\cdot\left(m-2\right)\)
\(=m^2+2m+1-4m+8=m^2-2m+9\)
\(=m^2-2m+1+8=\left(m-1\right)^2+8>=8>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
b: Theo vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m+1\\x_2x_1=\dfrac{c}{a}=m-2\end{matrix}\right.\)
c: \(A=x_1^2+x_2^2-6x_1x_2\)
\(=\left(x_1+x_2\right)^2-8x_1x_2\)
\(=\left(m+1\right)^2-8\left(m-2\right)\)
\(=m^2+2m+1-8m+16\)
\(=m^2-6m+17=\left(m-3\right)^2+8>=8\forall m\)
Dấu '=' xảy ra khi m-3=0
=>m=3