\(\text{Δ}=\left(2m-1\right)^2-4\left(m^2-1\right)\)
\(=4m^2-4m+1-4m^2+4=-4m+5\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>-4m+5>0
=>-4m>-5
=>\(m< \dfrac{5}{4}\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2m+1\\x_1x_2=\dfrac{c}{a}=m^2-1\end{matrix}\right.\)
\(P=x_1^2+x_2^2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(-2m+1\right)^2-2\left(m^2-1\right)\)
\(=4m^2-4m+1-2m^2+2=2m^2-4m+3\)
\(=2m^2-4m+2+1=2\left(m-1\right)^2+1>=1\forall m\)
Dấu '=' xảy ra khi m-1=0
=>m=1