Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ẩn danh

Bài 1:

a: \(9x^2\cdot\left(2x-3\right)=0\)

=>\(x^2\left(2x-3\right)=0\)

=>\(\left[{}\begin{matrix}x^2=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

b: (x-1)(3x-6)=0

=>3(x-1)(x-2)=0

=>(x-1)(x-2)=0

=>\(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

c: (x+2)(3-3x)=0

=>3(1-x)(x+2)=0

=>(1-x)(x+2)=0

=>\(\left[{}\begin{matrix}1-x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\\end{matrix}\right.\)

d: \(\left(\dfrac{2}{3}x+6\right)\left(8-2x\right)=0\)

=>\(\left[{}\begin{matrix}\dfrac{2}{3}x+6=0\\8-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{3}x=-6\\2x=8\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-6:\dfrac{2}{3}=-9\\x=\dfrac{8}{2}=4\end{matrix}\right.\)

e: \(\left(4x+2\right)\left(x^2+1\right)=0\)

=>4x+2=0

=>4x=-2

=>\(x=-\dfrac{2}{4}=-\dfrac{1}{2}\)

f: \(\left(3x-4\right)\left(x+1\right)\left(2x-1\right)=0\)

=>\(\left[{}\begin{matrix}3x-4=0\\x+1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)

g: \(\left(3x-2\right)^2\cdot\left(x+1\right)\cdot\left(x-2\right)=0\)

=>\(\left[{}\begin{matrix}3x-2=0\\x+1=0\\x-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-1\\x=2\end{matrix}\right.\)

h: \(\left(2x+3\right)^2=\left(x-5\right)^2\)

=>\(\left(2x+3\right)^2-\left(x-5\right)^2=0\)

=>(2x+3+x-5)(2x+3-x+5)=0

=>(3x-2)(x+8)=0

=>\(\left[{}\begin{matrix}3x-2=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-8\end{matrix}\right.\)

i: \(\left(6x-7\right)\left(3x+4\right)=\left(7-6x\right)\left(x-1\right)\)

=>\(\left(6x-7\right)\left(3x+4\right)+\left(6x-7\right)\left(x-1\right)=0\)

=>(6x-7)(3x+4+x-1)=0

=>(6x-7)(4x+3)=0

=>\(\left[{}\begin{matrix}6x-7=0\\4x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{6}\\x=-\dfrac{3}{4}\end{matrix}\right.\)

j: \(\left(3x-2\right)\left(x+1\right)=x^2-1\)

=>(3x-2)(x+1)-(x-1)(x+1)=0

=>(x+1)(3x-2-x+1)=0

=>(x+1)(2x-1)=0

=>\(\left[{}\begin{matrix}x+1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)

k: \(-5\left(4x-1\right)\left(x-2\right)=2\left(4x-1\right)^2\)

=>\(2\left(4x-1\right)^2+5\left(4x-1\right)\left(x-2\right)=0\)

=>\(\left(4x-1\right)\left[2\left(4x-1\right)+5\left(x-2\right)\right]=0\)

=>\(\left(4x-1\right)\left(8x-2+5x-10\right)=0\)

=>(4x-1)(13x-12)=0

=>\(\left[{}\begin{matrix}4x-1=0\\13x-12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=\dfrac{12}{13}\end{matrix}\right.\)

l: \(x^2-8x+12=0\)

=>(x-2)(x-6)=0

=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

Bài 2:

a: ĐKXĐ: x<>0

\(\dfrac{1}{x}+\dfrac{1}{2x}=\dfrac{3}{2}\)

=>\(\dfrac{2}{2x}+\dfrac{1}{2x}=\dfrac{3}{2}\)

=>\(\dfrac{3}{2x}=\dfrac{3}{2}\)

=>2x=2

=>x=1(nhận)

b: ĐKXĐ: x<>0

\(\dfrac{x^2-6}{x}=x+\dfrac{3}{2}\)

=>\(x-\dfrac{6}{x}=x+\dfrac{3}{2}\)

=>\(\dfrac{-6}{x}=\dfrac{3}{2}\)

=>x=-4(nhận)

c: ĐKXĐ: x<>3/4

\(\dfrac{3x}{4x-3}=-2\)

=>-2(4x-3)=3x

=>-8x+6=3x

=>-11x=-6

=>\(x=\dfrac{6}{11}\left(nhận\right)\)

d: ĐKXĐ: x<>0

\(\dfrac{3}{8x}-\dfrac{1}{2x}=\dfrac{1}{x^2}\)

=>\(\dfrac{3}{8x}-\dfrac{4}{8x}=\dfrac{1}{x^2}\)

=>\(-\dfrac{1}{8x}=\dfrac{-8}{8x^2}\)

=>\(-\dfrac{x}{8x^2}=\dfrac{-8}{8x^2}\)

=>-x=-8

=>x=8(nhận)

e: ĐKXĐ: x<>2

\(\dfrac{x}{x-2}=\dfrac{2}{x-2}+7\)

=>\(\dfrac{x}{x-2}-\dfrac{2}{x-2}=7\)

=>-1=7(vô lý)

=>Phương trình vô nghiệm

f: ĐKXĐ: \(x\notin\left\{3;-2\right\}\)

\(\dfrac{2}{x-3}=\dfrac{1}{x+2}\)

=>2(x+2)=x-3

=>2x+4=x-3

=>2x-x=-3-4

=>x=-7(nhận)

g: ĐKXĐ: \(x\notin\left\{\dfrac{3}{2};-7\right\}\)

\(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)

=>\(\left(6x+1\right)\left(x+7\right)=\left(3x-2\right)\left(2x-3\right)\)

=>\(6x^2+42x+x+7=6x^2-9x-4x+6\)

=>43x+7=-13x+6

=>56x=-1

=>\(x=-\dfrac{1}{56}\left(nhận\right)\)

h: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)

\(\dfrac{2x+1}{x+1}+\dfrac{2}{x}=\dfrac{2}{x\left(x+1\right)}\)

=>\(\dfrac{x\left(2x+1\right)+2\left(x+1\right)}{x\left(x+1\right)}=\dfrac{2}{x\left(x+1\right)}\)

=>\(x\left(2x+1\right)+2\left(x+1\right)=2\)

=>\(2x^2+x+2x+2=2\)

=>\(2x^2+3x=0\)

=>x(2x+3)=0

=>\(\left[{}\begin{matrix}x=0\left(loại\right)\\x=-\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)


Các câu hỏi tương tự
Xuân Thường Đặng
Xem chi tiết
Thảo Thảo
Xem chi tiết
Nguyên
Xem chi tiết
Đỗ Thành Đạt
Xem chi tiết
Pham Trong Bach
Xem chi tiết
gh
Xem chi tiết
LovE _ Khánh Ly_ LovE
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Trần Thủy Tiên
Xem chi tiết