Xét ΔABC có \(cosB=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)
=>\(\dfrac{4^2+4,5^2-AC^2}{2\cdot4\cdot4,5}=cos40\)
=>\(36,25-AC^2=36\cdot cos40\)
=>\(AC^2=36,25-36\cdot cos40\)
=>\(AC=\sqrt{36,25-36\cdot cos40}\simeq2,9\left(cm\right)\)
Xét ΔABC có \(\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)
=>\(sinC=AB\cdot\dfrac{sinB}{AC}=\dfrac{4\cdot sin40}{2,9}\simeq0,89\)
=>\(\widehat{C}\simeq62^0\)