9: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2x}{9-x}\right):\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)-2x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-3\sqrt{x}-2x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}-1-2\sqrt{x}+6}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}}{-\sqrt{x}+5}=\dfrac{x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+3\right)}\)
10: \(C=\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right):\dfrac{\sqrt{x}}{x+2\sqrt{x}}\)
\(=\left(\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\right)\cdot\left(\sqrt[]{x}+2\right)\)
\(=\dfrac{\sqrt{x}+2-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}\cdot\left(\sqrt{x}+2\right)\)
\(=\dfrac{4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{4}{x-4}\)