Bài 8:
a: \(A=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(B=\left(3-\sqrt{5}\right)\cdot\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\cdot\sqrt{3-\sqrt{5}}\)
\(=\dfrac{\left(3-\sqrt{5}\right)\sqrt{6+2\sqrt{5}}+\left(3+\sqrt{5}\right)\cdot\sqrt{6-2\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)}{\sqrt{2}}\)
\(=\dfrac{3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}}{\sqrt{2}}=\dfrac{4\sqrt{5}}{\sqrt{2}}=\sqrt{40}=2\sqrt{10}\)
c: \(C=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{4-\left(2+\sqrt{2+\sqrt{3}}\right)}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{4-\left(2+\sqrt{3}\right)}=\sqrt{2+\sqrt{3}}\cdot\sqrt{2-\sqrt{3}}\)
\(=\sqrt{4-3}=1\)