Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=7\end{matrix}\right.\)
Đặt: \(A=\left|x_1-x_2\right|\)
\(\Rightarrow A^2=\left(x_1-x_2\right)^2\)
\(=x_1^2-2x_1x_2+x_2^2\)
\(=\left(x_1^2+2x_1x_2+x_2^2\right)-4x_1x_2\)
\(=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=6^2-4\cdot7=8\)
\(\Rightarrow A=\sqrt{8}=2\sqrt{2}\rightarrow\) Chọn B. \(2\sqrt{2}\)