c) Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+x_2\right)^2=4m^2+8m+4\left(1\right)\\4x_1x_2=4m^2+4m-8\left(2\right)\end{matrix}\right.\)
Lấy (1) - (2): \(\left(x_1+x_2\right)^2-4x_1x_2=4m+12\) (*)
Mặt khác từ: \(x_1+x_2=2m+2\Leftrightarrow2\left(x_1+x_2\right)=4m+4\)
\(\Leftrightarrow4m=2\left(x_1+x_2\right)-4\) (**)
Thay (**) vào (*), ta được:
\(\left(x_1+x_2\right)^2-4x_1x_2=2\left(x_1+x_2\right)-4+12\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-2\left(x_1+x_2\right)=8\) không phụ thuộc vào m
$\text{#}Toru$