\(\text{Δ}=\left(2m+2\right)^2-4\cdot1\cdot2m\)
\(=4m^2+8m+4-8m=4m^2+4>=4>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+2\\x_1x_2=\dfrac{c}{a}=2m\end{matrix}\right.\)
\(\sqrt{x_1}+\sqrt{x_2}=\sqrt{2}\)
=>\(x_1+x_2+2\sqrt{x_1x_2}=2\)
=>\(2m+2+2\sqrt{2m}=2\)
=>\(2m+2\sqrt{2m}=0\)
=>\(m+\sqrt{2m}=0\)
=>\(\sqrt{m}\left(\sqrt{m}+\sqrt{2}\right)=0\)
=>\(\sqrt{m}=0\)
=>m=0