Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phong Lê

loading...  ………

a: Phương trình hoành độ giao điểm là:

\(x^2=3x-2\)

=>\(x^2-3x+2=0\)

=>(x-2)(x-1)=0

=>\(\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

mà \(x_A< x_B\)

nên \(x_A=1;x_B=2\)

Thay x=1 vào (P), ta được:

\(y=1^2=1\)

Thay x=2 vào (P), ta được:

\(y=2^2=4\)

Vậy: A(1;1); B(2;4)

b: O(0;0); A(1;1); B(2;4)

\(OA=\sqrt{\left(1-0\right)^2+\left(1-0\right)^2}=\sqrt{2}\)

\(OB=\sqrt{\left(2-0\right)^2+\left(4-0\right)^2}=2\sqrt{5}\)

\(AB=\sqrt{\left(2-1\right)^2+\left(4-1\right)^2}=\sqrt{10}\)

Xét ΔAOB có \(cosAOB=\dfrac{OA^2+OB^2-AB^2}{2\cdot OA\cdot OB}=\dfrac{2+20-10}{2\cdot\sqrt{2}\cdot2\sqrt{5}}=\dfrac{12}{4\sqrt{10}}=\dfrac{3}{\sqrt{10}}\)

=>\(sinAOB=\sqrt{1-\left(\dfrac{3}{\sqrt{10}}\right)^2}=\dfrac{1}{\sqrt{10}}\)

Diện tích tam giác AOB là:

\(S_{AOB}=\dfrac{1}{2}\cdot OA\cdot OB\cdot sinAOB\)

\(=\dfrac{1}{2}\cdot\dfrac{1}{\sqrt{10}}\cdot\sqrt{2}\cdot2\sqrt{5}=1\)


Các câu hỏi tương tự
Xuân Thường Đặng
Xem chi tiết
Thảo Thảo
Xem chi tiết
Nguyên
Xem chi tiết
Đỗ Thành Đạt
Xem chi tiết
Pham Trong Bach
Xem chi tiết
gh
Xem chi tiết
LovE _ Khánh Ly_ LovE
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Trần Thủy Tiên
Xem chi tiết