Bài 3:
a: Thay m=2 vào (d), ta được:
\(y=-3x+2^2=-3x+4\)
Phương trình hoành độ giao điểm là:
\(x^2=-3x+4\)
=>\(x^2+3x-4=0\)
=>(x+4)(x-1)=0
=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)
Thay x=-4 vào (P), ta được:
\(y=\left(-4\right)^2=16\)
Thay x=1 vào (P), ta được:
\(y=1^2=1\)
Vậy: (d) cắt (P) tại A(-4;16); B(1;1)
b: Phương trình hoành độ giao điểm là:
\(x^2=-3x+m^2\)
=>\(x^2+3x-m^2=0\)
\(\text{Δ}=3^2-4\cdot1\cdot\left(-m^2\right)=4m^2+9>0\forall m\)
=>(P) luôn cắt (d) tại hai điểm phân biệt