Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quang Bảo Lương
Nguyễn Việt Lâm
12 tháng 1 lúc 18:51

\(0\le x;y;z\le1\Rightarrow\left\{{}\begin{matrix}y^4\le y^2\\z^{2020}\le z^2\\\end{matrix}\right.\)

\(\Rightarrow G\le x^2+y^2+z^2-xy-yz-zx\)

Mặt khác do \(x;y;z\in\left[0;1\right]\)

\(\Rightarrow xyz+\left(1-x\right)\left(1-y\right)\left(1-z\right)\ge0\)

\(\Rightarrow xy+yz+zx-\left(x+y+z\right)+1\ge0\)

\(\Rightarrow-\left(xy+yz+zx\right)\le1-\left(x+y+z\right)\)

\(\Rightarrow G\le x^2+y^2+z^2-\left(x+y+z\right)+1\)

\(\Rightarrow G\le x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)+1\)

Do \(x;y;z\in\left[0;1\right]\Rightarrow\left\{{}\begin{matrix}x\left(x-1\right)\le0\\y\left(y-1\right)\le0\\z\left(z-1\right)\le0\end{matrix}\right.\)

\(\Rightarrow G\le1\)

\(G_{max}=1\) khi \(\left(x;y;z\right)=\left(0;1;1\right);\left(0;0;1\right)\) và các hoán vị


Các câu hỏi tương tự
Xuân Thường Đặng
Xem chi tiết
Thảo Thảo
Xem chi tiết
Nguyên
Xem chi tiết
Đỗ Thành Đạt
Xem chi tiết
Pham Trong Bach
Xem chi tiết
gh
Xem chi tiết
LovE _ Khánh Ly_ LovE
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Trần Thủy Tiên
Xem chi tiết