Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1$
a.
\(A=\left[\frac{x+2}{(\sqrt{x}-1)(x+\sqrt{x}+1)}+\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{x+\sqrt{x}+1}{(\sqrt{x}-1)(x+\sqrt{x}+1)}\right].\frac{2}{\sqrt{x}-1}\)
\(=\frac{x+2+(x-\sqrt{x})-(x+\sqrt{x}+1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}.\frac{2}{\sqrt{x}-1}=\frac{x-2\sqrt{x}+1}{(\sqrt{x}-1)(x+\sqrt{x}+1)}.\frac{2}{\sqrt{x}-1}\)
\(=\frac{2(\sqrt{x}-1)^2}{(\sqrt{x}-1)^2(x+\sqrt{x}+1)}=\frac{2}{x+\sqrt{x}+1}\) (đpcm)
b.
Với $x\geq 0; x\neq 1$ thì $x+\sqrt{x}+1\geq 1$
$\Rightarrow A\leq \frac{2}{1}=2$
Vậy $A_{\max}=2$. Giá trị này đạt tại $x=0$