a: \(=x^k+2x^{2-1-k}-\dfrac{1}{2}\cdot x^{2k+1+k-2}-x^{2k+1-1-k}\)
\(=x^k+2x^{1-k}-\dfrac{1}{2}x^{3k-1}-x^k\)
\(=2x^{1-k}-\dfrac{1}{2}x^{3k-1}\)
b: \(=\dfrac{2}{3}\cdot y^{3+k-1}-\dfrac{2}{3}\cdot\dfrac{1}{9}\cdot y^{3+3-k}+6\cdot y^{2k-1+k-1}-6\cdot\dfrac{1}{9}y^{2k-1+3-k}\)
\(=\dfrac{2}{3}y^{k+2}-\dfrac{2}{27}y^{6-k}+6y^{3k-2}-\dfrac{2}{3}y^{k+2}\)
\(=\dfrac{-2}{27}y^{6-k}+6y^{3k-2}\)