\(3x^2-5x-15=0\)
Theo Vi-ét , ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{5}{3}\\x_1x_2=\dfrac{c}{a}=-\dfrac{15}{3}=-5\end{matrix}\right.\)
Ta có : \(D=x_1^4+x_2^4\)
\(=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2x_1^2x_2^2\)
\(=\left[\left(\dfrac{5}{3}\right)^2-2.\left(-5\right)\right]^2-2.\left(-5\right)^2\)
\(=\dfrac{9175}{81}\)