\(\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2\ge0\)
\(\Leftrightarrow x+y\ge2\left(\sqrt{x}+\sqrt{y}\right)-2=2\)
Đồng thời:
\(2=\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}\Rightarrow xy\le1\)
\(\Rightarrow\sqrt{xy}\le1\)
\(\Rightarrow-\sqrt{xy}\ge-1\)
Từ đó:
\(P\ge2-2022.1=-2020\)
\(P_{min}=2020\) khi \(x=y=1\)

