Với `x >= 0,x \ne 4` có:
`P=3/[(\sqrt{x}-2)(\sqrt{x}+1)]+2/[\sqrt{x}+1]+1/[2-\sqrt{x}]`
`P=[3+2(\sqrt{x}-2)-\sqrt{x}-1]/[(\sqrt{x}-2)(\sqrt{x}+1)]`
`P=[3+2\sqrt{x}-4-\sqrt{x}-1]/[(\sqrt{x}-2)(\sqrt{x}+1)]`
`P=[\sqrt{x}-2]/[(\sqrt{x}-2)(\sqrt{x}+1)]=1/[\sqrt{x}+1]`