11: \(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
12: \(=\dfrac{\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}}{1-xy}\cdot\dfrac{1-xy}{x+xy}\)
\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{x\left(1+y\right)}=\dfrac{2\sqrt{x}\left(1+y\right)}{x\left(1+y\right)}=\dfrac{2}{\sqrt{x}}\)