a; \(OA=OB=R\left(1\right);OC\) \(chung\left(2\right)\)
\(OC\perp AB;\Delta OAB\) \(cân\) \(tạiO\Rightarrow OC\) \(là\) \(phân\) \(giácAOB\Rightarrow góc\) \(AOC=góc\) \(BOC\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\Delta AOC=\Delta BOC\left(cgc\right)\Rightarrow góc\) \(OAC=góc\) \(OBC=90^o\left(4\right)\)
\(\left(1\right)\left(4\right)\Rightarrowđpcm\)
\(b;gọi\) \(giao\) \(điểm\) \(OC\) \(và\) \(AB\) \(tại\) \(I\Rightarrow I\) \(là\) \(trung\) \(điểmAB\Rightarrow IB=\dfrac{AB}{2}=12cm\Rightarrow OI=\sqrt{OB^2-IB^2}=9cm\Rightarrow OB^2=OI.OC\Rightarrow OC=\dfrac{OB^2}{OI}=25cm\)