a: \(A=\dfrac{x-x+\sqrt{x}}{\sqrt{x}-1}:\dfrac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}=\dfrac{x}{\sqrt{x}+1}\)
b: \(\sqrt{x}+1>=1>0;x>=0\)
Do đó: A>0 với mọi x thỏa ĐKXĐ
c: Để A=2 thì \(x=2\sqrt{x}+2\)
\(\Leftrightarrow x-2\sqrt{x}-2=0\)
hay \(x=4+2\sqrt{3}\)