a. Do \(A\left(0;1\right)\in P\left(d\right)=ad+b\Leftrightarrow1=0a+b\left(1\right)\)
\(B\left(33;2\right)\in P\left(d\right)=ad+b\Leftrightarrow2=33a+b\left(2\right)\)
Từ (1) và (2), ta có hpt: \(\left\{{}\begin{matrix}0a+b=1\\33a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{33}\\b=1\end{matrix}\right.\)
b. Ta có: \(P\left(d\right)=\dfrac{1}{33}d+1\)
Khi \(d=100\Rightarrow P=\dfrac{1}{33}\cdot100+1=\dfrac{133}{33}\approx4\left(atm\right)\)