`\sqrt{[1-2x]/[x+1]}+\sqrt{[4x+4]/[1-2x]}=3` `ĐK: -1 < x < 1/2`
`<=>\sqrt{[1-2x]/[x+1]}+2\sqrt{[x+1]/[1-2x]}=3`
Đặt `\sqrt{[1-2x]/[x+2]}=t` `(t > 0)` khi đó có:
`t+2 . 1/t=3`
`<=>t^2+2=3t`
`<=>t^2-3t+2=0`
Ptr có: `a+b+c=1-3+2=0`
`=>t_1=1` (t/m) và `t_2=c/a=2` (t/m)
`@t=1=>\sqrt{[1-2x]/[x+1]}=1`
`<=>[1-2x]/[x+1]=1`
`<=>1-2x=x+1<=>x=0` (t/m)
`@t=2=>\sqrt{[1-2x]/[x+1]}=2`
`<=>[1-2x]/[x+1]=4`
`<=>1-2x=4x+4<=>x=-1/2` (t/m)
Vậy `S={0;-1/2}`