1 p/t có : \(\Delta\)' = \(2^2-m=4-m\)
1 ) Để p/t có 2 no thì \(\Delta\)' \(\ge0\) \(\Leftrightarrow m\le4\)
Theo Vi-ét ta có : \(\left\{{}\begin{matrix}x1+x2=-4\\x1.x2=m\end{matrix}\right.\)
Do 2 no cùng dấu âm nên x1.x2 > 0 \(\Rightarrow m>0\)
Vậy ...
2 ) \(2x^2-3x-6=0\) có \(\Delta\) = \(3^2-4.2\left(-6\right)=57>0\)
-> p/t có 2 no x1 ; x2 p/b
Theo vi-et ta có : \(\left\{{}\begin{matrix}x1+x2=\dfrac{3}{2}\\x1.x2=-3\end{matrix}\right.\)
Khi đó : \(x1^3+x2^3=\left(x1+x2\right)^3-3x1.x2\left(x1+x2\right)=\left(\dfrac{3}{2}\right)^3-3.\left(-3\right).\dfrac{3}{2}=\dfrac{135}{8}\)
Vậy ...